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Linear Model is Limited

Data: Target Hypothesis:
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Another Example

Credit line is affected by years in residence xi

Does it affect the output linearly?

No! Stability might be achieved after about five years.

Define nonlinear features:

I [[xi < 1]]→ credit limit is affected negatively.
I [[xi > 5]]→ credit limit is affected positively.

Can we do this with linear models?
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Linear in what?
Linear regression implements:

d∑
i=0

wixi

Linear classification implements

sign
 d∑
i=0

wixi



Algorithm works because of linearity in the weights.

Represent input by appropriate features and apply linear models.
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Example - Transform the Data Nonlinearly
I Data not linearly separable, but separable by a circle i.e. x2

1 +x2
2 = 0.6.

I A nonlinear hypothesis h(x) = sign(0.6−x2
1−x2

2) separates the data set.
I Hypotheses linear after applying a nonlinear transformation on x:

h(x) = sign[(0.6)︸ ︷︷ ︸
w̃0

· 1︸︷︷︸
z0

+(−1)︸ ︷︷ ︸
w̃1

· x1
2︸︷︷︸
z1

+(−1)︸ ︷︷ ︸
w̃2

2

· x2
1︸︷︷︸
z2

] = sign(w̃T z)

Data in X -space Transform data in Z-space
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Example - Transform the Data Nonlinearly

In feature space Z, coordinates are higher-level features of raw input x.
Let z = Φ(x), where the transform Φ(x) : X →Z is defined as
(x1,x2) Φ−→ (x2

1,x
2
2)

xn ∈ X Transform data in zn = Φ(xn) ∈ Z
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Example - Transform the Data Nonlinearly

Apply PLA on the transform data set to obtain w̃PLA in space Z

g̃(z) = sign(w̃T z) g(x) = g̃(Φ(x)) = sign(w̃T Φ(x))

Circular separator in X maps to linear separator in Z and vice versa
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Nonlinear Transforms
In general:

x = (x0,x1, · · · ,xd) Φ−→ z = (z0, z1, · · · · · · · · · , zd̃)

Each zi = φi(x) and dimension d̃ of feature space Z can be any number.

Example: z = (1,x1,x2,x1x2,x
2
1,x

2
2)

Final hypothesis g(x) in X space:
I Linear classification:

h(x) = sign
(
w̃T z

)
h(x) = sign

(
w̃TΦ(x)

)
I Linear Regression:

h(x) = w̃TΦ(x)
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The Price to Pay
How does the feature transform affect the VC bound?

I The bound remains true by using dVC(HΦ) if we decide on Φ before
seeing the data.

I Denote HΦ to be the hypothesis set in Z

x = (x0,x1, · · · ,xd) Φ−→ z = (z0, z1, · · · · · · · · · , zd̃)
↓ ↓
w w̃ In general, d̃ > d

dVC = d+ 1 dVC ≤ d̃+ 1

The ≤ is because some points z ∈ Z may not be valid transforms of any x
(some dichotomies are not realizable).
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Two non-separable cases
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First Case
We have two outliers. Two possibilities:

Use a linear model in X ;
accept Ein > 0

Insist on Ein = 0;
go to high-dimensional Z

Better option: ignore the two outliers. Not a good generalization!
(4th order polynomial fit)
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Second Case
There is no chance to approximate the target using a linear model.
Apply: z = (1,x1,x2,x1x2,x

2
1,x

2
2)

6 degrees of freedom vs 3 using linear.
Why not: z = (1,x2

1,x
2
2)

3 degrees of freedom?
or better yet: z = (1,x2

1 +x2
2)

2 degrees of freedom?
or even: z = (x2

1 +x2
2−0.6)

1 degrees of freedom?
No!

Theory of dVC valid if Φ decided before seeing data or trying any algorithm.
VC dimension is charged for previously explored models.
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Lesson Learned
Looking at the data before choosing the model can be hazardous to your Eout.

Data snooping:
Decide how to perform after looking at
the data
You must account for all of the data
snooping you engage in.

However, deciding on Φ based on
understanding of the problem does not
affect generalization.
E.g. suggest nonlinear transformation
for the ‘years in residence’.
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Example - Handwritten Digit Recognition
I Separate digit 1 from all the other digits, using intensity and symmetry.
I A line can roughly separate digit 1 from the rest.

Classification of the digits data using linear and third order polynomial models:
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Maximum Likelihood and Bayes Estimation

Estimation
Estimation is the inference of unknown quantities. Two cases are considered:
1. Quantity is fixed, but unknown – parameter estimation
2. Quantity is random and unknown – random variable estimator

Parameter Estimation
Consider a set of observations forming a vector

x = [x1,x2, · · · ,xN ]T

Assumption: The xi RVs come from a known density governed by unknown
(but fixed) parameter θ
Objective: Estimate θ. What optimality criteria should be used?
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Definition (Maximum Likelihood Estimation)
The maximum likelihood estimate of θ is the value θ̂ML(x) which makes the x
observations most likely

θ̂ML(x) = argmax
θ

fx|θ(x|θ)

Example
Let xi ∼N(µ,σ2). Given N observations, find the ML estimate of µ.

function   

µ µ̂
x
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For i.i.d. samples

fx|µ(x|µ) =
N∏
i=1

fxi|µ(xi|µ)

=
N∏
i=1

1√
2πσ2

e
− (xi−µ)2

2σ2 [Gaussian case]

4= likelihood function

Thus the estimate of the mean it is set as

µ̂= argmax
µ

fx|µ(x|µ)

Interpretation: Set the distribution mean to the value that makes obtaining
the observed samples most likely.
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Note: Maximizing fx|µ(x|µ) is equivalent to maximizing any monotonic
function of fx|µ(x|µ). Choosing ln(·)

ln(fx|µ(x|µ)) = ln
 N∏
i=1

1√
2πσ2

e
− (xi−µ)2

2σ2


= −N ln(

√
2πσ2)−

N∑
i=1

(xi−µ)2

2σ2

= −N ln(
√

2πσ2)−
N∑
i=1

x2
i

2σ2 +µ
N∑
i=1

xi
σ2 −

N∑
i=1

µ2

2σ2

Taking the derivative and equating to 0,
∂ ln(fx|µ(x|µ))

∂µ
=

N∑
i=1

xi
σ2 −

Nµ

σ2 = 0

⇒ µ̂= 1
N

N∑
i=1

xi
4= sample mean
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General Maximum Likelihood Result
General Statement: The ML estimate of θ is

θ̂ML(x) = argmax
θ

fx|θ(x|θ)

Solution: The ML estimate of θ is obtained as the solution to
∂

∂θ
fx|θ(x|θ)

∣∣∣∣
θ=θML

= 0

or
∂

∂θ
ln[fx|θ(x|θ)]

∣∣∣∣
θ=θML

= 0

I fx|θ(x|θ) is the likelihood function of θ.
I θ̂ML is a RV since it is a function of the RVs x1,x2, · · · ,xN

Historical Note: ML estimation was pioneered by geneticist and statistician Sir
R. A. Fisher between 1912 and 1922
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Example
The time between customer arrivals at a bar is a RV with distribution

fT (T ) = αe−αTU(T )

Objective: Estimate the arrival rate α based on N measured arrival intervals
T1,T2, · · · ,TN .
Assuming that the arrivals are independent,

f(T1,T2, · · · ,TN ) =
N∏
i=1

fT (Ti)

=
N∏
i=1

αe−αTi = αNe
−α

N∑
i=1

Ti

⇒ ln[f(T1,T2, · · · ,TN )] = [N ln(α)−α
N∑
i=1

Ti]
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Taking the derivative and equating to 0,

∂

∂α
ln[f(T1,T2, · · · ,TN )] = ∂

∂α
[N ln(α)−α

N∑
i=1

Ti]

= N

α
−

N∑
i=1

Ti = 0

Solving for α gives the ML estimate

⇒ α̂ML = 1
1
N

∑N
i=1Ti

= 1
T

Result: The ML estimate of arival rate for exponentially distributed samples is
the reciprocal of the sample mean arrival
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Location Estimation in Generalized Gaussian Noise
Statistical Foundations of Filtering Maximum Likelihood Estimation

Location Estimation in Generalized Gaussian Noise

In the generalized Gaussian distribution case, the Maximum Likelihood estimate of
location is

f (X1,X2, · · · ,XN ;β) =
N∏

i=1

fγ(Xi − β)

=
N∏

i=1

C e−|Xi−β|γ/σ

= CNe−
∑N

i=1|Xi−β|γ/σ, (8)

where C is a normalizing constant, and γ is the dispersion parameter.
Maximizing the likelihood function is equivalent to

β̃ML = argmin
β

N∑

i=1

|Xi − β|γ . (9)

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 19 / 39
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Statistical Foundations of Filtering Maximum Likelihood Estimation

β̃ML = argmin
β

N∑

i=1

|Xi − β|γ .

X
1

X
4

X
3

X
5

X
2

γ = 2

γ = 1

γ = 0.5

Figure: Cost functions for the observation samples
X1 = −3,X2 = 10,X3 = 1,X4 − 1,X5 = 6 for γ = 0.5, 1, and 2.

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 20 / 39
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Statistical Foundations of Filtering Maximum Likelihood Estimation

When the dispersion parameter is 1, the model is Laplacian and the optimal
estimator minimizes

β̃ML = argmin
β

N∑

i=1

|Xi − β|. (10)

The solution to the above is the sample median as it is shown next.
Define the cost function in (10) as L1(β). For values of β in the interval
−∞ < β ≤ X(1), L1(β) is simplified to

L1(β) =
N∑

i=1

(
X(i) − β

)
=

N∑

i=1

X(i) − Nβ. (11)

This, as a direct consequence that in this interval, X(1) ≥ β.

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 21 / 39

The k-th order statistic of a statistical sample is equal to its k-th smallest value:

X(1) = min{X1, ...,XN}, ..., X(N) = max{X1, ...,XN}
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Statistical Foundations of Filtering Maximum Likelihood Estimation

For values of β in the range X(j) < β ≤ X(j+1), L1(β) can be written as

L1(β) =

j∑

i=1

(
β − X(i)

)
+

N∑

i=j+1

(
X(i) − β

)

=




N∑

i=j+1

X(i) −
j∑

i=1

X(i)


− (N − 2j)β, (12)

for j = 1, 2, · · · ,N − 1.
Similarly, for X(N) < β < ∞,

L1(β) = −
N∑

i=1

X(i) + Nβ. (13)

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 22 / 39
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Statistical Foundations of Filtering Maximum Likelihood Estimation

Letting X(0) = −∞ and X(N+1) = ∞, and defining
∑n

i=m X(i) = 0 if m > n, we
can combine (11)-(13) into the following compactly written cost function

L1(β) =




N∑

i=j+1

X(i) −
j∑

i=1

X(i)


− (N − 2j)β, j = 0, 1, · · · ,N (14)

for β ∈ (X(j),X(j+1)].

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 23 / 39
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Statistical Foundations of Filtering Maximum Likelihood Estimation

L1(β) =




N∑

i=j+1

X(i) −
j∑

i=1

X(i)


− (N − 2j)β, j = 0, 1, · · · ,N

L1(β) is piecewise linear and continuous.

It starts with slope −N for −∞ < β ≤ X(1).

As each X(j) is crossed, the slope is increased by 2.

At the extreme right the slope ends at N for X(N) < β < ∞.

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 24 / 39
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Statistical Foundations of Filtering Maximum Likelihood Estimation

For N odd there is an integer k, such that the slopes over the intervals
(X(k−1),X(k)] and (X(k),X(k+1)], are negative and positive, respectively. From
(14), these two conditions are satisfied if both

k <
N

2
and k >

N

2
− 1

hold. Both constraints are met when k = N+1
2

β̂ML = argmin
β

N∑

i=1

|Xi − β|

=

{
X( N+1

2 ) N odd(
X( N

2 )
,X( N

2 )

]
N even

= MEDIAN(X1,X2, · · · ,XN). (15)

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 25 / 39
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Logistic Regression - Outline

Popular method to predict the probability of a binary outcome. Logistic
regression measures the relationship between the y “Label” and the x
“Features”. The probability is used to predict the label class.

E.g. prediction of heart attacks. There is not certainty, probability fits better
than a binary decision.

I The model

I Error measure

I Learning algorithm
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A Third Linear Model
Let

s=
d∑
i=0

wixi

Linear classification

h(x) = sign(s)

Linear regression

h(x) = s

Logistic regression

h(x) = θ(s)

Threshold Identity θ is a nonlinear function.
Something in between

In logistic regression, output is real (like regression) but bounded (like
classification)
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The Logistic Function θ
The sigmoid function:

θ(s) = es

1 + es

I Restricts the output to probability range
[0,1].

I Interpreted as a probability for a binary
event (e.g. digit ‘1’ vs digit ‘5’).

I Allows to be uncertain.
I θ(s) offer analytical and computational

advantages.

Soft threshold: uncertainty

There are other popular soft threshold functions.
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Probability Interpretation

h(x) = θ(s) is interpreted as a probability

Example: Prediction of heart attacks.

I Input x: cholesterol level, age, weight, etc.

I θ(s): probability of a heart attack
Predict how likely is to occur given these factors.

I The signal s= wTx “risk score”
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Genuine Probability

f(x) = P[y = +1|x]
Data does not give the value of f . Gives samples generated by this probability.
E.g. patients who had heart attacks and who didn’t.

Consider data (x,y) with binary y, generated by a noisy target:

P(y|x) =
{

f(x) for y = +1;
1−f(x) for y =−1.

The target f : Rd→ [0,1] is the probability

Goal: Learn g(x) = θ(wTx)≈ f(x). How do I choose w?
How close is hypothesis h to f in terms of noisy examples?
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Error Measure

For each (x,y), y is generated by probability f(x)

y =
{

+1 with probability f(x);
−1 with probability 1−f(x).

Logistic regression uses a plausible error measure based on likelihood:

If h= f , how likely to get y from x?

P (y|x) =
{

h(x) for y = +1;
1−h(x) for y =−1.
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Formula for Likelihood

P (y|x) =
{

h(x) for y = +1;
1−h(x) for y =−1.

Substitute h(x) = θ(wTx), use the fact θ(−s) = 1− θ(s)

P (y|x) =
{

θ(wTx) for y = +1;
θ(−wTx) for y =−1. P (y|x) = θ(ywTx)

Likelihood of data set D = (x1,y1), · · · ,(xN ,yN ) is

N∏
n=1

P (yn|xn) =
N∏
n=1

θ(ynwTxn)

since the data points are independently generated.
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Maximizing the Likelihood
Use the method of maximum likelihood to select the hypothesis h which
maximizes the probability of a given data set.

ŵ = argmax
w

N∏
n=1

θ(ynwTxn)

Note: Maximizing a positive function q is equivalent to maximizing any
monotonic function of q.
Conveniently choosing 1

N ln(q) to get an error:

ŵ = argmax
w

1
N

ln
 N∏
n=1

θ(ynwTxn)


This is equivalent to

ŵ = argmin
w

− 1
N

ln
 N∏
n=1

θ(ynwTxn)

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Maximizing the Likelihood

ŵ = argmin
w

− 1
N

ln
 N∏
n=1

θ(ynwTxn)


= argmin
w

1
N

N∑
n=1

ln
(

1
θ(ynwTxn)

)
(∗)

substituting θ(s) = 1
1+e−s in (∗) and treating the cost function in (∗) as the

‘in-sample error measure’

Ein(w) = 1
N

N∑
n=1

ln
(

1 + e−ynwT xn
)

︸ ︷︷ ︸
e(h(xn),yn)

“cross-entropy” error

Maximizing the likelihood is equivalent to minimizing Ein
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Learning Algorithm - How to Minimize Ein

For linear regression:

Ein(w) = 1
N

N∑
n=1

(wTxn−yn)2 ← closed form solution

Compare to logistic regression,

Ein(w) = 1
N

N∑
n=1

ln
(

1 + e−ynwT xn
)

← iterative solution

Note: Error measure is small when ynwTxn is positive. Encourages w to
‘classify’ each xn correctly (i.e. sign(wTxn) = yn).
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Iterative Method: Gradient Descent

Start at w(0); take a step along steepest slope.

Fixed step size:

w(1) = w(0) +η(−∇Ein)

In logistic regression, cross-error entropy error
is a convex function of w.

It has unique global minimum.
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Iterative Method: Gradient Descent
Computing the gradient:

∇Ein = 1
N

N∑
n=1

1
1 + e−ynwT (t)xn

∇w(1 + e−ynwT (t)xn)

= 1
N

N∑
n=1

e−ynwT (t)xn

1 + e−ynwT (t)xn
∇w(−ynwT (t)xn)

= − 1
N

N∑
n=1

ynxn
1 + eynwT (t)xn

Update the weights

w(t+ 1) = w(t)−η∇Ein



40/46

II: Nonlinear Transformation FSAN/ELEG815

Summary of Linear Models
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Example - South African Coronary Heart Disease (CHD)
Data set: A sample of males in a heart-disease high-risk region of the
Western Cape, South Africa. Data are taken from a larger dataset, described
in Rousseauw et al, 1983, South African Medical Journal.
Risk Factors:
I Tobacco: cumulative tobacco (kg)
I LDL: Low Densiity Lipoprotein cholesterol adiposity
I Famhist: family history of heart disease (Present 1, Absent 0)
I Age: age at onset

Each data example:
x = [x0,x1,x2,x3,x4]T

Output Label:
CHD: response (Present 1, Absent 0), Coronary Heart Disease
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Analyzing Features
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Results from Logistic Regression Fit

Weights:
w = [−4.204,0.081,0.168,0.924,0.044]T

Given a data point x = [1,12,5.73,1,52]T .

The probability of Coronary Heart Disease is:

g(x) = θ(wTx) = 0.719
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Examples of Logistic Regression

Why logistic regression is cool

I It’s very simple to use

I Speed

I Logistic regression excels in transparency compared to neural networks,
which operate like black boxes. Logistic regression, in contrast may be
called the "white box"
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5 real-world cases

Credit scoring

ID Finance is a financial company that makes predictive models for credit
scoring. For logistic regression, it is easy to find out which variables affect the
final result of the predictions.

Medicine

Miroculus is a company that develops express blood test kits. Its goals is to
identify diseases that are affected by genes. The developers obtain
200-dimensional feature vectors from scientific articles and use Logistic
regression to identify relationship between micro-RNA and genes.
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5 real-world cases

Text editing

Toxic speech detection, topic classification and email sorting.

Hotel Booking

Booking.com

Gaming

The algorithm analyzes a very large amount of data about user behavior and
gives suggestions about equipment a particular user may want to acquire on
the run.
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